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Abstract

In this paper, the Bayesian prediction intervals (BPI ′s) of future observa-
tions are obtained under Modified Weibull Distribution (MWD) in case of one
and two-sample prediction schemes. Based on a type-II censored sample from
a real data set, the BPI ′s of the remaining observations are obtained.
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1 Introduction

The Weibull distribution is one of the most popular and widely used models of failure
time in life testing and reliability theory. The Weibull distribution has been shown
to be useful for modeling and analysis of life time data in medical, biological and
engineering sciences. Applications of the Weibull distribution in various fields are
given in Zaharim et al. [21], Gotoh et al. [7], Shamilov et al. [16], Vicen-Bueno et
al. [20], Niola et al. [15] and Green et al. [8]. A great deal of research has been done
on estimating the parameters of the Weibull distribution using both classical and
Bayesian techniques, and a very good summary of this work can be found in Johnson
et al. [11]. Hossain and Zimmer [9] have discussed some comparisons of estimation
methods for Weibull parameters using complete and censored samples. Jaheen and
Harbi[10] studied the Bayesian estimation of the exponentiated Weibull distribution
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using Markov chain Monte Carlo simulation. The modified Weibull distribution was
proposed by Lai et al. [12] as a new lifetime distribution. They have shown the capa-
bility of the model for modeling a bathtub-shaped hazard-rate function. In addition,
they characterized the model through the Weibull plot paper. Further, they have
shown that the modified Weibull model compares well with other competing models
to fit data that exhibit a bathtub-shaped hazard-rate function. Sultan [17] studied
the record values from the modified Weibull distribution and studied its applications.
Vasile et al. [19] used the Bayes method to estimate the parameters of the modified
Weibull distribution and Upadhyaya and Gupta [18] studied the Bayes analysis of the
modified Weibull distribution using Markov chain Monte Carlo simulation. Ateya[4]
study the estimation problem under a censored sample of generalized order statistics
from MWD.

Bayesian prediction of future observations play a fundamental role in disciplines
such as medicine, economics, engineering, education, metrology and politics, among
others. Moreover, Geisser [6] mentioned that the problem of prediction can be solved
fully within the Bayesian framework. For more details, see Ateya[1-3], and Ateya and
Rizk[5].

A random variable X is said to have a MWD with vector of parameters θ =
(β, τ, λ) if its probability density function (pdf) is given by

f(x; θ) = τ (β + λx) xβ−1 exp(λ x) exp(−τ xβ eλ x), x ≥ 0, (τ > 0, β ≥ 0, λ ≥ 0).

(1.1)

The reliability function (rf) and the hazard rate function (hrf) of this distribution
can be written, respectively as

R(x) = exp(−τ xβ eλ x), (1.2)

h(x) = τ (β + λx) xβ−1 exp(λx), (1.3)

2 Bayesian Prediction Intervals of Future Observations in
Case of One-sample Scheme

Suppose that X1 < X2 < ... < Xr is the informative sample, representing the first
r ordered lifetimes of a random sample of size n drawn from a population with pdf
fX(x), cumulative distribution function (cdf) FX(x) and rf R(x). In one-sample
scheme, the BPI ′s for the remaining unobserved future (n − r) lifetimes are sought
based on the first r observed ordered lifetimes. For the remaining (n−r) components,
let Ys = Xr+s denote the future lifetime of the sth component to fail, 1 ≤ s ≤ (n− r).
The conditional density function of Ys given that the r components had already failed
is

g1(ys|θ) ∝ [R(xr)−R(ys)]
(s−1)[R(ys)]

n−r−s[R(xr)]
−(n−r)fX(ys|θ), ys > xr, (2.1)

where θ is the vector of parameters. The predictive density function is given by

g∗1(ys|x) =

∫

θ

g1(ys|θ)π∗(θ|x)dθ, ys > xr, (2.2)
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π∗(θ|x) is the posterior density function of θ given x and x = (x1, ..., xr).
To obtain (1− τ)100% BPI for x∗a, say (L,U), we solve the following two nonlinear
equations, numerically,

P (X∗
a > L| x) =

∫ ∞

L

f ∗(x∗a| x)dx∗a = 1− τ

2
, (2.3)

P (X∗
a > U | x) =

∫ ∞

U

f ∗(x∗a| x)dx∗a =
τ

2
. (2.4)

Eqs. (2.3) and (2.4) can be solved by using Newton- Raphson iteration form as follows

Lj+1 = Lj −
∫∞

Lj
f ∗(x∗a| x)dx∗a − (1− τ

2
)

−f ∗(Lj| x)
, (2.5)

Uj+1 = Uj −
∫∞

Uj
f ∗(x∗a| x)dx∗a − τ

2

−f ∗(Uj| x)
, (2.6)

where the initial values L0, U0 can be taken equal to xr.
The integrals in (2.5) and (2.6) can be obtained using Mathematica8.

3 Bayesian Prediction Intervals of Future Observations in
Case of Two-sample Scheme

Let X1 < X2 < ... < Xr and Z1 < Z2 < ... < Zm represent informative (type II
censored) sample from a random sample of size n and a future ordered sample of size
m, respectively. It is assumed that the two samples are independent and drawn from
a population with pdffX(x), cdfFX(x) and rfR(x). Our aim is to obtain the BPI ′s
for Zs, s = 1, 2, ...,m. The conditional density function of Zs, given the vector of
parameters θ, is

g2(zs|θ) ∝ [1−R(zs)]
(s−1)[R(zs)]

m−sfX(zs|θ), zk > 0, (3.1)

where θ is the vector of parameters.
The predictive density function is given by

g∗2(zs|x) =

∫

θ

g2(zs|θ)π∗(θ|x)dθ, zs > 0, (3.2)

where π∗(θ|x) is the posterior density function of
θ given x and x = (x1, ..., xr).

A (1− τ)100% BPI for zs is an interval (L,U) such that

P (Zs > L|x) =

∫ ∞

L

g∗2(zs|x)dzs = 1− τ

2
, (3.3)

P (Zs > U |x) =

∫ ∞

U

g∗2(zs|x)dzs =
τ

2
. (3.4)

Eqs. (3.3) and (3.4) can be solved by using Newton- Raphson iteration form as follows

Lj+1 = Lj −
∫∞

Lj
g∗2(zs| x)dzs − (1− τ

2
)

−g∗(Lj| x)
, (3.5)
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Uj+1 = Uj −
∫∞

Uj
g∗2(zs| x)dzs − (1− τ

2
)

−g∗(Uj| x)
, (3.6)

where the initial values L0, U0 can be taken equal to zs−1.
The integrals in (3.5) and (3.6) can be obtained using Mathematica8.

In the previous two sections, we will use the likelihood function of the form

L(β, τ, λ|x) ∝ τ r exp[−(n− r + 1) τ xβ
r eλ xr ]

( r∏
i=1

(β + λxi) xβ−1
i exp(λxi)

)
×

( r−1∏
i=1

exp[−τ xβ
i eλ xi ]

)
,

(3.7)

and the trivariate prior pdf suggested by Ateya[3] which of the form

π(β, τ, λ) ∝ 1

Γ(β)
βc1+c3−1 τβ+c3−1 λβ−1 exp[−β (τ + c2)− τ λ],

β > 0, τ > 0, λ > 0, (c1 > 0, c2 > 0, c3 > 0),

(3.8)

where c1, c2 and c3 are the prior parameters ( also known as hyperparameters).
Then, the posterior density function can be written in the form

π∗(β, τ, λ| x) =
A

Γ(β)
βc1+c3−1 τβ+r+c3−1 λβ−1 exp[−β (τ + c2)− τ (λ + (n− r + 1) xβ

r eλ xr)]×
( r∏

i=1

(β + λxi) xβ−1
i exp(λxi)

)( r−1∏
i=1

exp[−τ xβ
i eλ xi ]

)
,

β > 0, τ > 0, λ > 0, (c1 > 0, c2 > 0, c3 > 0),

(3.9)

where A is a normalizing constant.

4 Results

4.1 Simulated Results

A 95% one-sample BPI of the future observations, x∗a, a = 1, 2, 3, are obtained. Also,
a 95% two-sample BPI for the future observations, zs, s = 1, 2, 3, are obtained as
follows:

1. For given set of prior parameters (c1 = 1.5, c2 = 0.5, c3 = 2.5), the generated
population parameters are β = 2.1, τ = 1.77 and λ = 3.4,

2. Using the generated parameters, we generate a sample of size 40 of upper or-
dered observations and we will take the censoring values r = 10, 15, 20,

3. A 95% one-sample BPI for the future ordered observation x∗a, a = 1, 2, 3, are
obtained,
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4. Using the generated ordered sample in 2, a 95% two-sample BPI for the future
ordered observation zs, s = 1, 2, 3 are obtained,

In our study,
Table(1) displays the one-sample BPI and the coverage percentage of the ath future
ordered observation ,
Table(2) displays the two-sample BPI and the coverage percentage of the sth future
ordered observation,
Table(1): 95 % one-sample BPI for future upper ordered observation

x∗a, a = 1, 2, 3.
1-Percentage coverage of the BPI.
2-BPI for x∗a.
3- Length of the BPI.

(n, r) x∗1 x∗2 x∗3
1 96.22% 97.19% 98.23%

(40, 10) 2 (0.1432,0.5421) (0.4658,1.0104) (0.9446,1.8142)
3 0.3989 0.5446 0.8696
1 95.87% 96.38% 97.47%

(40, 15) 2 (0.8007,1.1133) (1.1047,1.5511) (1.3421,2.1210)
3 0.3126 0.4464 0.7789
1 95.24% 95.85% 96.54%

(40, 20) 2 (1.3309,1.6118) (1.5400,1.9164) (1.8342,2.5340)
3 0.2809 0.3764 0.6998

Table(2): 95% two-sample BPI for future upper ordered observation
zs, s = 1, 2, 3.
1-Percentage coverage of the BPI.
2-BPI for zs.
3- Length of the BPI.

(n, r,N) z1 z2 z3

1 97.21% 98.64% 98.98%
(40, 10, 15) 2 (0.0918,0.3105) (0.2917,0.6034) (0.5906,1.2220)

3 0.2187 0.3117 0.6314
1 96.77% 97.22% 98.15%

(40, 15, 15) 2 (0.1905,0.3732) (0.3203,0.5551) (0.4809,0.8590)
3 0.1827 0.2351 0.3781
1 95.94% 96.00% 97.25%

(40, 20, 15) 2 (0.2053,0.3144) (0.3011,0.4820) (0.4614,0.6915)
3 0.1091 0.1809 0.2301

In one and two-sample schemes, observe the following:

1. For fixed sample size n and a certain x∗a, the length of the BPI and its Per-
centage coverage decrease, by increasing r,

2. For fixed sample size n and r, and for a certain x∗a, the length of the BPI and
its Percentage coverage increase, by increasing a,

3. For fixed sample size n and a certain zs, the length of the BPI and its Percentage
coverage decrease, by increasing r,
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4. For fixed sample size n and r, and for a certain zs, the length of the BPI and
its Percentage coverage increase, by increasing s.

4.2 Data Analysis And Applications

In this subsection, two real data sets are introduced as illustrative applications. These
real data sets are analyzed using Weibull and modified Weibull distributions. A
comparison study is carried out between the two models based on K−S test statistic,
AIC and BIC. 95% One and two-sample BPI of the first three unknown observations
are obtained.

4.2.1 Application 1

The first real data set is from Lawless [13] and represents the breakdown time of an
insulating fluid between electrodes at a voltage of 34 kv (minutes). The 19 times to
breakdown are: 0.96, 4.15, 0.19, 0.78, 8.01, 31.75, 7.35, 6.50, 8.27, 33.91, 32.52, 3.16,
4.85, 2.78, 4.67, 1.31, 12.06, 36.71 and 72.89
A model suggested by engineering considerations is that, for a fixed voltage level,
time to breakdown has a Weibull distribution. These real data are analyzed using
Weibull(α, β) distribution and using MWD(β, τ, λ). The K − S, AIC and BIC are
computed for each model in Table 3. Observe that the MWD(β, τ, λ) model has
smaller K−S, AIC and BIC values which means that the MWD(β, τ, λ) model fits
the real data set better than Weibull(α, β) model. Based on type-II censored sample
with censoring value r = 12, the 95% one-sample BPI for the unknown observa-
tions x13, x14 and x15 are (7.9165, 8.7414), (11.1083, 13.6201) and (30.4132, 37.7612),
respectively. Also, the 95% two-sample BPI for the unknown observations z1, z2 and
z3 are (0.2314, 0.4102), (0.4415, 0.7712) and (0.79109, 1.5015).

Table 3:-MLE ′s of the parameters, the associated K − S, AIC and BIC values.
Model MLE ′s K − S AIC BIC

Weibull(α, β) α̂ = 0.7708, β̂ = 0.1452 0.1981 78.991 81.824

MWD(β, τ, λ) β̂ = 0.7793, τ̂ = 0.1416, λ̂ = 0.0015 0.1319 76.111 78.944

4.2.2 Application 2

The second real data set from Nicholas and Padgett[14]. The data concerning tensile
strength of 100 observations of carbon fibers, they are: 3.7, 3.11, 4.42, 3.28, 3.75,
2.96, 3.39, 3.31, 3.15, 2.81, 1.41, 2.76, 3.19, 1.59, 2.17, 3.51, 1.84, 1.61, 1.57, 1.89,
2.74, 3.27, 2.41, 3.09, 2.43, 2.53, 2.81, 3.31, 2.35, 2.77, 2.68, 4.91, 1.57, 2.00, 1.17,
2.17, 0.39, 2.79, 1.08, 2.88, 2.73, 2.87, 3.19, 1.87, 2.95, 2.67, 4.20, 2.85, 2.55, 2.17,
2.97, 3.68, 0.81, 1.22, 5.08, 1.69, 3.68, 4.70, 2.03, 2.82, 2.50, 1.47, 3.22, 3.15, 2.97,
2.93, 3.33, 2.56, 2.59, 2.83, 1.36, 1.84, 5.56, 1.12, 2.48, 1.25, 2.48, 2.03, 1.61, 2.05,
3.60, 3.11, 1.69, 4.90, 3.39, 3.22, 2.55, 3.56, 2.38, 1.92, 0.98, 1.59, 1.73, 1.71, 1.18,
4.38, 0.85, 1.80, 2.12, 3.65.
These real data are analyzed using Weibull(α, β) distribution and using MWD(β,
τ, λ). The K − S, AIC and BIC are computed for each model in Table 4. Observe
that the MWD(β, τ, λ) model has smaller K−S, AIC and BIC values which means
that the MWD(β, τ, λ) model fits the real data set better than Weibull(α, β) model.
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Based on type-II censored sample with censoring value r = 10, the 95% one-sample
BPI for the unknown observations x11, x12 and x13 are (1.2172, 1.3662), (1.2322, 1.4301)
and (1.2032, 1.4812), respectively. Also, the 95% two-sample BPI for the unknown
observations z1, z2 and z3 are (0.1022, 0.1902), (0.1702, 0.29155) and (0.25654, 0.5408).

Table 4:-MLE ′s of the parameters, the associated K − S, AIC and BIC values.
Model MLE ′s K − S AIC BIC

Weibull(α, β) α̂ = 0.0391, β̂ = 3.0629 0.2103 258.659 266.475

MWD(β, τ, λ) β̂ = 2.2800, τ̂ = 0.0323, λ̂ = 0.3477 0.1211 255.036 262.852

5 Conclusions

In this paper, the Bayesian prediction problem of future observations are studied
under MWD. A simulation study is carried out to study the behavior of the length
and the percentage coverage of the BPI ′s under various n and r.

Two real data sets from Weibull(α, β) distribution are introduced and analyzed
using MWD. A comparison is carried out between the mentioned distributions based
on the corresponding Kolmogorov-Smirnov (K − S) test statistic to emphasize that
the MWD model fits the data better than the other model. Based on a type-II
censored sample from the real data, the BPI ′s of the remaining observations are
obtained in case of the one and two- sample schemes.

References

[1] S.F. Ateya, Bayesian prediction intervals under bivariate truncated generalized
Cauchy distribution, J. Statist. Res. Iran 7(2010), 133-153.

[2] S.F. Ateya, Prediction under generalized exponential distribution using MCMC
algorithm, International Mathematical Forum 6(2012), 3111-3119.

[3] S.F. Ateya, Bayesian Prediction Intervals of Future Nonadjacent Generalized
Order Statistics from Generalized Exponential Distribution Using Markov Chain
Monte Carlo Method, Applied Mathematical Sciences, 6(2012), 1335 - 1345.

[4] S.F. Ateya, Estimation Under Modified Weibull Distribution Based on Right
Censored Generalized Order Statistics, J. Applied Statistics, 40(2013), 2720-
2734.

[5] S.F. Ateya and M.M. Rizk, Bayesian Prediction Intervals of Future Gen-
eralized Order Statistics Under a Finite Mixture of Generalized Exponential
Distributions, Applied Mathematical Sciences, 7( 2013), 1575 - 1592

[6] S. Geisser, Predictive Inference: An Introduction, Chapman and Hall, London,
1993.

[7] T. Gotoh, M. Fukuhara, and K. I. Kikuchi, Mathematical model for change
in size distribution of baculovirus-infected Sf-9 insect cells, The 3rd WSEAS In-
ternational Conference on Cellular and Moleculaz Biology, Biophysics and Bio-
engineering, 2007, 25-29.

7

International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 
ISSN 2229-5518 

1631

IJSER © 2015 
http://www.ijser.org 

IJSER



[8] E.J. Green, F.A. Jr. Roesh, A.F.M. Smith and W. E. Strawderman,
Bayes estimation for the three parameter Weibull distribution with tree diameters
data, Biometrics, 50(1994), 254-269.

[9] A.M. Hossain and W.J. Zimmer, Comparison of estimation methods for
Weibull parameters: complete and censored samples, J. Statist. Comput. Simu-
lation, 73 (2003), 145-153.

[10] Z.F. Jaheen and M.M. Al Harbi, Bayesian Estimation for the Exponentiated
Weibull Model via Markov Chain Monte Carlo Simulation, Commun. Statist.-
Simul. Comput., 40(2011), 532-543.

[11] N.L. Johnson, S. Kotz and N. Balakrishnan, Continuous Univariate Dis-
tributions,Wiley, NewYork,(1994).

[12] C.D. Lai, M. Xie and D.N. Murthy, A modified Weibull distribution, IEEE
Trans. Reliab., 52(2003), 33-37.

[13] J. F. Lawless, Statistical Model and Methods for Lifetime Data, Wiley, New
York (1982).

[14] M.D. Nicholas and W. J. Padgett, A bootstrap control chart for Weibull
percentiles, Quality and Reliability Engineering International, 22(2006), 141-
151.

[15] V. Niola, R. Oliviero and G. Quaremba, The application of wavelet trans-
form for estimating the shape parameter of a Weibull pdf, Proceedings 5th Wseas
International Conference on Signal Processing, (2005), 126-130.

[16] A. Shamilov, I. Usta and Y.M. Kantar, The Distribution of Minimizing
Maximum Entropy: Alternative to Weibull distribution for Wind Speed,WSEAS
Transactions on Mathematics, 5(2006), 695-700.

[17] K.S. Sultan, Record values from the modified Weibull distribution and appli-
cations, International Mathematical Forum, 2(2007), 2045-2054.

[18] S.K. Upadhyaya, and A. Gupta, A Bayes analysis of modified Weibull dis-
tribution via Markov chain Monte Carlo simulation, J. Statist. Comput. Simul.
80 (2010), 241-254.

[19] P. Vasile, P. Eugenia and C. Alina, Bayes estimators of modified Weibull
distribution parameters using Lindley’s approximation, WSEAS Transactions on
Mathematics, 9(2010), 539-549.

[20] R. Vicen-Bueno, M. Rosa-Zurera, L. Cuadra- Rodriguez and D. De La
Mata-Moya, Models of radar clutter from the Weibull distribution, Proceedings
of the 5th WSEAS International Conference on Signal Processing, Robotics and
Automation, (2006), 376-380.

[21] A. Zaharim, S.K. Najid, A.M. Razali and K. Sopian, The Suitability of
Statistical Distribution in Fitting Wind Speed Data, WSEAS Transactions on
Mathematics, 7(2008), 718-727.

8

International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 
ISSN 2229-5518 

1632

IJSER © 2015 
http://www.ijser.org 

IJSER




